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Thermodynamic Limit of the q-State Potts-Hopfield 
Model with Infinitely Many Patterns 
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We prove the almost sure convergence of the free energy and of the overlap 
order parameters in a q-state version of the Hopfield neural network model. We 
compute explicitly these limits for all temperatures different from some critical 
value. The number of stored patterns is allowed to grow with the size of the 
system N like (c~/ln q) In N. We study the limiting behavior of the extremal states 
of the model that are the measures induced on the Gibbs measures by the 
overlap parameters. 

KEY WORDS: Neural networks; disordered systems; mean field theory; 
Ports models. 

1. I N T R O D U C T I O N  

In  this p a p e r  we s tudy the t h e r m o d y n a m i c  of the q-state P o t t s - H o p f i e l d  
mode l  for neura l  networks.  This  mode l  general izes the s t anda rd  Hopfie ld  
model ,  which serves to store b inary  ("black and  white")  pa t te rns  of  
informat ion ,  to one in which "co lored"  pat terns ,  that  is, pa t te rns  for which 
each site can be in q different states, are stored.  Such models  have been 
p r o p o s e d  in refs. 3, 8, 10, and  11. 

We cons ider  a ne twork  made  of N neurons  (sites) which we label  by  
the set A = {1,..., N}. Each neuron  is a l lowed to be in q different states and  
we denote  by 5 :  = { 1 ..... q } the state space of a single neuron.  A state of the 

neura l  ne twork  is thus descr ibed by a = {ffi}ieA, where ai  takes value in 5:. 
We  m a y  also th ink  as a as a spin conf igura t ion  on A. 

A given set o f p  spin conf igurat ions ,  deno ted  by  r ..... CPe O ~ will be 
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chosen as the original patterns we want to memorize. To this purpose, we 
define the energy function 

HA(6; 4)=  2N 6(~ ,  g~)-  (1.1) 
, u = l  i 1 

where 3(-,-)  is the Kronecker symbol and ~ denotes the family ~1 ..... ~p. 
Obviously we cannot study this model for any possible choice of pat- 

terns and the best we may hope for is to obtain statements that are valid 
for all "typical" choices of patterns. To make this notion more precise, one 
is led to introduce a probability space (O, S, P) such that there exists a 
family ( ~ ) i ~ , , ~  of independent, identically distributed (i.i.d.) random 
variables with P ( { f = y ) = l / q  for all ~e{1,...,q}, i e N  and # s N .  We 
will denote by ~ the previous family and by ~lN, p the restriction 
~lN, p=(~)i_l,...,U;p=l,...,p. If there is no danger of confusion we will also 
denote by 4 this restriction. We will thus consider each Ha(a; {) as a ran- 
dom variable on the probability space (f2, X, P). The idea is that for fixed 
A, HA(a; 4) as a function of ~ should take its minima when c~ is one of the 
prestored patterns {~'. It has been proven in fact in ref. 15 for q = 2 and in 
ref. 8 for q ~> 2 that there exist at least one local minimum about each 
pattern 4". That is to say, for p < aN and ~ = e(q) sufficiently small, this 
minimum is taken on at a configuration ~r for which the discrepancy with 
respect to 4" is a small fraction of N depending on e. 

The retrieval process consists in introducing a Markov process 
(dynamic) on the state space 5~A in such a way that the associated 
invariant measure is given by the Gibbs distribution {exp[--flHA(a; 4)] }/ 
ZA({ ) corresponding to the Hamiltonian (1.1). The inverse temperature 
parametrizes the noise of the memory. Since we are interested in 
asymptotic properties of very large networks, we will investigate the 
thermodynamic limit of these distributions. 

The thermodynamic formalism for the standard Hopfield model 
( q = 2 )  has been introduced in ref. 2 (see also refs. 1, 10, and 14) and 
developed by Koch and Piasko "2) in the particular form that we will 
follow here. In ref. 12 they obtained an exact expression for the free energy 
and the overlap of the local magnetization with the stored patterns in the 
limit NT oo for all temperatures, provided the number of stored patterns is 
bounded by p(N) <~ (~/ln 2) In N. The essential idea behind their method is 
a clever change of variables (originally introduced by Grensing and 
Kiihn ~9)) that allows one to write an effective Hamiltonian that is a sum of 
Curie-Weiss Hamiltonians. On a certain subset of the probability space of 
the patterns (we will show here that this subset actually has measure one) 
one can then evaluate exactly the thermodynamic quantities of this model. 
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Notice that here the patterns correspond to exact global minimas of the 
free energy functional. Moreover, the patterns retrieved under the retrievial 
dynamic are expected to be the exact prestored patterns, in contrast with 
refs. 15 and 8, where errors are allowed. 

Generalizing this approach to the q-state model requires us to deal 
with some hew geometric complexities and in particular needs the solution 
of the Curie Weiss version of the Potts model. This latter has been given 
in a recent paper by Kesten and Schonmann. (13) We give a self-contained 
derivation of it for our purposes in Section 3. 

The remainder of this paper is organized as follows. In Section 2 we 
describe the change of variables leading to an effective Hamiltonian 
amenable to a mean field treatment. Section 3 derives the exact solution of 
the mean field Potts model that will provide the basis of the subsequent 
analysis. In Section 4 we define the free energy for our model and prove the 
first central result of this paper (Theorem 1): If the number of stored 
patterns is given as some function p(N) of N that satisfies the bound 
p(N) <<. (e/ln q) In N with c~ < 1, then the limit as N Toe of the free energy 
exists for almost all (with respect to the probability measure on the space 
of patterns introduced above) choices of patterns 4. Moreover, the limiting 
function F(fl) is independent of 4 and will be computed explicitly. In 
Section 5 we investigate in more detail the structure of the infinite-volume 
Gibbs states. We will add a magnetic field term t/~2i [6(~7, ai) -  1/q] to 
the Hamiltonian that "favors" one particular pattern 4 ~. We then introduce 
the order parameters 

m~(a; 4 ) = ~  6(~, a i ) -  , #= 1,..., p 
i = l  

which is the overlap between a configuration a and the pattern 4", and 

m~'~(4) = (mA~(a; ~))~, # = I,..., p 

which is their expectation with respect to the Gibbs measure fr in the 
presence of the field coupling to the pattern 4 ~. We will show (Theorem 2) 
that again for almost all choices of patterns the limits of these quantities 
exist. Moreover, as r/+ 0 and for/? different from some critical value/?c, 

m ~'~ _ q - 1 So(/?) 6(c~, #) >/0 
q 

where So(/?) has a jump at the critical temperature (thus the model exhibits 
a first-order phase transition in the mean overlap parameter). As a conse- 
quence of Theorem 2, we will show (Theorem 3) that the measure .~" 
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induced by the Gibbs measures ff~ on the overlaps converge to a Dirac 
distribution concentrated on m ~'~. These induced measures, first studied in 
the Curie-Weiss model in ref. 7 for the magnetization parameter, are the 
extremal states of our model. That is (Theorem 4), adding a magnetic field 
coupling to a finite number l of patterns with equal strength, the measure 
. ~  ...... ~ induced by the Gibbs measure (r ...... t on the overlaps converges to 
a symmetric linear combination of the extremal states ~ ,  r = 1,...,/. 

The results obtained here present a fairly complete analysis of the ther- 
modynamic limit of the Potts-Hopfield model in the case of a "low density 
of patterns." The dynamical properties of our model are, however, also 
affected by local (and not global) minima of the Curi~Weiss free energy 
functionals. Their structure will be investigated in a followup article. 

2. AN EFFECTIVE H A M I L T O N I A N  

For  a given choice of patterns ~, the Hamiltonian (1.1) will take the 
same value for many spin configurations. To make this fact evident, we will 
perform a change of variables. This will allow us to introduce an effective 
Hamiltonian depending on a reduce number of degrees of freedom and that 
will be convenient for a mean field treatment. This transformation has been 
introduced in ref. 9 and used in the standard Hopfield model in ref. 12. 

Using the formula 

q 

6 ( ~ ,  ~,) = ~ 6(~f, y) 6(7, r (2.1) 
7 1 

we have 

q 7=1 

and the Hamiltonian (1.1) can be rewritten as 

1 
~(~//~, ~ ) ) -  8(]), O ' i ) -  (2 .3)  HA(#; ~) -  2N ~--I 

//=1 i 1 y = l  

,u Let us consider ~lN, p as  a p x N matrix {~i }~= 1.....p;i~A, that is, a map 
from Zp x 7/u into ~ .  The row and column vectors ~ and ~ can then be 
viewed as given by the maps ~ and ( from Zp x ZN into (5 ~ 7/N) and 
(5 ~ Zp) respectively. That  is, 

~: (#, i)--* ({r i) 

and 

~: (#,i)~({~}v=X,....p,I -t) 
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Let {el ..... ea} be an arbitrarily fixed enumeration of the d= qP vectors 
k~ of ~P.  As before we can consider the p x d matrix {ek}u=l,...,p;k= l,...,d as a 

map from 2p x Za into 5 P and the maps _e and ~ from Zp • 2d into (5 ad, Za) 
and (5 pp, 7/p) as giving the row and column vectors e ~ and ek: 

e: (#,k)~({e)'}j=t,...,d,k) 
and 

0: (~, k) --, ({e; } v = ,,..., p, ~) 

These mappings are illustrated by the following diagrams: 

(Zp X ZN) ~ ) (~P, Zp) (Zp X 7/d) ~ :' (~PP, Zp) 

where ~ is the canonical projection ~(~,  ~ ) =  ~ ,  etc. Note that, e.g., the 
action of ~ on the 2p functions is trivial; we will thus think of ~, 3, etc., also 
a s  maps from 7/u into ~P,  and 2N into ~N. Notice also that the map ~ is 
invertible. As a consequence, for a fixed e and any given ~]N.p, the two 
mappings ~ and 0 define a map I~ = ~ ~o ~ from 2N into Z d described by 
the following diagram: 

ZN C ~ 5e p 

2d 

Now, notice that Ir induces a partition of the set A into d disjoint (possibly 
empty) subsets Ak(~)= {i~A:Ic(i)=k} with the property that, for all 
i~Ak(~), ~i=ek. By using this partition, the Hamiltonian (2.3) becomes 

HA(a; ~)-  
2N 1,=1 k 1 

2N~=1 1 7 ~ 1 ~ i ~ A k ( ~ )  

(2.4) 

This last expression makes it evident that the Hamiltonian only depends on 
the variables 

i e  A k ( ~ )  
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Let L denote the vector (L 1,..., La) in Nd whose components L~ = tAk(r 
are given by the cardinality of the subsets Ak(~). Then, for all ~ = 1 ..... q, 
y(]) takes values in {-L~/q,  1- L~/q ..... L~-L~/q}. Also notice that, con- 
sidering y(~) as vectors in gU, they satisfy by construction the constraint 

q 

y(~)=0 (2.5) 
7 = 1  

We denote by Y~ the set (Y(~)}7=l,...,q of these q vectors, and the space of 
all possible Yr will be called 3~. Through the Y~, the map I~ also induces 
a partition of the state space ~A into subspaces 

i e  (~) 

If now we still define the vectors e~'(~) in ~a by ~'(~)-,~to~ 7 ) -  1/q, our ~ k  - - ~ t ~ k  ~ 

Hamiltonian finally takes the desired reduced form: for all a ~ 5e(Yr 

HA(a; ~) = -- 2-N ~ (~"'(')}Y('))a (2.6) 
u = l  y 1 

Here, ( ' l ' ) d  denotes the scalar product in ~a and I[-Ila will denote the 
corresponding norm. 

Our next goal is to obtain an effective Hamiltonian Ha(Yr for the 
variables Yr To do this, we write the partition function 

1 

1 

1 
qU 

1 
qU 

1 
=--qN 

e x p [ -  fiHA(a; ~)3 
a E s a A  

~ exp[--flHA(a; #)] 
Y~--~ a~.~(Y~) 

~ { [fl ~ (~= q (d,,(,) ] )2]}  
exp ~-~ ~ - 1  Y(~))d 

Y. --4 ,u = 1 7 1 

[ f l  ~ (_~_ q )2 

Y ~ e S ~  # =  1 7 1 

e x p [  - flEcA(Y~)] 
Y~ ~ , ~  

where H(Y~) is defined by 

H(Y~) = - - -  

a ~ .,,~(Y~) 

+ln  1~9~(Yr ] 

1 [q 12 1 
, u ~ l  y 1 

(2.7) 

(2.8) 
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and 15e(Yr I is given by 

15e(Yr = , = 1  Hq=x (y~7)+Lk/q)! 

The following lemma collects some properties on the vectors e ~'(~) 
appearing in H(Yr 

Lemma 2.1. 
Then: 

(i) 
(ii) 

(iii) 

(iv) 

Let #, v e { 1,..., p}, c~, 7 s {1 ..... q}, and ~a--- (1,..., 1)e Na. 

(~dle"'(~))d= O. 

E q = 1 ~#' (~) ---~ O. 

If # r  then (~"'(v)lev'(~))a=O for all a, y. 

If # = v, then 

(e~'(~)leF"(~))a={ clc: ifif ~r 

w h e r e  c 1 = d(q - 1)/q 2 and c2 = - d/q 2. 

Proof. These properties are easily verified by using the definitions of 
the e ~'(~) and remembering that {el,..., ed} is a fixed enumeration of the 
d =  qP vectors of 5ep. For example, (i) simply follows from the equality 
y[cl q p -  1 

k = l  6(e~, 7) = = d/q I. 
We now introduce the projection operators 

1 p 

- - -  (e"(~)la, 7 1,..., q 
Cl # = 1  

which project orthogonally onto the subspaces V (y) spanned by the vectors 
{e "'(~)} u = t,...,p. Norice that, however, these subspaces are not orthogonal to 
each other. 

After some lengthy but easy calculations and making use of 
Lemma2.1, we can express the Hamiltonian RA(Y~) in terms of this 
projection as 

q ] 
d q p(~)y(r)2 q ~ IIP<~)Y(Y)]I~ H A ( Y r  ~ 1 a q - -1  v=l 

1 ~, in I Lk[ ] 
1 (Y (~') /q)! fl k=, Hvq= + L k  

(2.10) 

where we have used (2.9). 
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In terms of the Hamiltonian /tA(Yr we may write the finite-volume 
free energy as 

1 e x p [ -  flHA(Y~)] (2.11) 
FA(~) = - - ~ l n  Z qN 

We will study the thermodynamic limit of this quantity in Section 4. 

3. M E A N - F I E L D  THEORY FOR POTTS M O D E L  

A major ingredient for the analysis of the effective Hamiltonian 
introduced in the previous section will be the mean-field theory for Potts 
models that has been developed recently by Kesten and Schonmann. (13) In 
this section we will summarize the results that we will need later. 

Using the same notations as in Section 2, we define the Curie-Weiss 
Hamiltonian for the Potts model by: 

J q 

- E E h, E (3.1) H(AC')'w)(G) 2 ]AI i, jEA 7=1  i~A 

where the interaction couples each pair of spins in A with equal strength 
J > 0 ,  and h= (hi,..., hq), hz,>~O for all 7, is an external magnetic field. 
Introducing the vectors x i=  (6(ai, 1),..., 8(ai, q)) aligned on the axes of ~q 
and using formula (2.1), we have 

i, jcA i = l  y = l  iEA i = 1  q 

which allow us to write the Hamiltonian (3.1) as a function of the sum 
z = (l/N) EN=I xi, 

H(ACW)(g) = -N[~ Ilzl/q~ + (hlz)ql (3.2) 

where the vectors z = (z 1,..., Zq) are in the subset Aq of E q given by 

A q = { Z E ~ q  ZT~O , ~ z e = l }  (3.3) 
),=1 

The partition function associated to this model is given by 

Z(AC'W)(fl, h) = f ~A I~ A( d~r ) exp[ --/~H~AC),W')((r)] (3.4) 
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where #A(dCr) = ~ I i e A  p(dai) and p is the uniform distribution on 50. Then 
defining the infinite-volume free energy as 

F(CW)(/~, h ) =  lim - l l n  Z(AC'W')(/~, h) (3.5) 
X ~  N 

we have the following result. 

L e m m a  3.1.: 

~ { fl 2+zTlnqzT-hTzT} Ucw)(/?, h) = min - ~ z~ 
z~Aq Y= 1 

(3.6) 

Romork. The proof of Lemma 3.1 is essentially contained in ref. 13. 
To be self-contained, we give here an alternative proof. 

Proof. Using (3.2), the partition function can be rewritten as 

where /~A denotes the distribution of z, i.e., the distribution of the mean 
(I/N) zN= 1 Xi of N independent random vectors xi with common distribu- 
tion P(xi = e~) = 1/q, ~ = 1 ..... q, where el ..... eq are the axes of Nq. It follows 
by Cramer's theorem (4'16) that the distributions {/~A, N = 1, 2,... } satisfy the 
large-deviation property with rate function 

I(z) =max {<tlZ>q-ln M(t)} 
t~Aq 

where M(t) is the moment-generating function 

q et7 
M(t) = [(e <'lx'>q) = 

y = l  q 

A simple calculation yields 

i(z) = {~__~ if zq~Aq 

z~ln(qz~) if ZEAq 
7 1 

2+ <h [ Z ) q  is bounded and continuous on Now, since the function l j  []Zl[q 
A q we have by the large-deviation principle (6'16) 
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' ;  {L; ]} lim In / ]a(dz)exp /~N Ilzll~+ (hlz>q 
N~oo - - N  Zlq 

= m a n {  j } z~q -2-11Zllq2-<hlz>u+I(z) 

which proves the lemma. I 

The problem now is to study the r ight-hand side of (3.6). Kesten and 
Schonmann proved the following result. 

Lemma 3.2. Let h = 0. Then  the minimum in the r ight-hand side of 
(3.6) is taken on only at a z of the form 

1 1 
z l = - [ l + ( q - 1 ) s ] ,  z r = - ( 1 - s ) ,  2~<7<~q (3.7) 

q q 

for some 0 ~< s 4 1 or at a point  obtained from such a z by permuting the 
coordinates.  

Let  tic denote  the critical value of fl: 

f l c : {22(q-1 /q -2 ) ln  q if q > 2  
if q = 2  

(3.8) 

If fl > tic, then the minimum in (3.6) is taken on for s = So(fl), where So(fl) 
is the largest solution of 

1 - -  e Pso 
So = 1 + (q - 1) e -as~ (3.9) 

If fl < tic, then the unique z at which the minimum is taken on in (3.6) is 

1 
z~ = - ,  1 ~< 7 <~ q (3.10) 

q 

corresponding to s = So = 0 in (3.7). Finally, 

So(fl) > 0 for fl > tic and lim So(fl)- q -  2 
~ q - - 1  

and 

So(fl) is different iablein fl for fl>flc 
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Notice that in the case q > 2, So(fl) has a jump discontinuity at fl = tic, 
which mean that the model has a first-order phase transition, in contrast 
to the case q = 2, where the transition is second order. 

For  later use we will denote the q minima of the right-hand side of 
(3.6) by ~(~). 

4. T H E R M O D Y N A M I C  L I M I T  OF T H E  FREE E N E R G Y  

In this section we will prove the almost sure convergence of the free 
energy when the number N of neurons tends to infinity and compute 
explicitly this limit. The number of stored patterns is allowed to grow to 
infinity; however, we require it to satisfy the bound p < (e/In q) In N, where 
0~<c~< 1 can be chosen arbitrarily. From now on, p=p(N) will be 
assumed to be a given such function. 

Remark. We show in the Appendix that the almost sure convergence 
of the free energy extends easily to the convergence in the spaces 
Lr(s Z', P), 1 ~<r< oo. 

In order to give a precise formulation to the theorem, we recall that 
~ of i.i.d, random variables on denotes the infinite family ~ = ( ; )i~ n,F,~ 

the probability space (g2, Z, P) and that ~lN, p denotes the restriction 
~lN, p=(~/)i=l,...,N;,=l,...,p. Remembering that ~]N,p induces a random 
partition of A in d boxes Ak(~lN, p) of length Lk(~,lN, p), we can introduce 
the subsets 

~N'P= {~ E'Q I Lk =N ( 1+ }~k), '~kl <l~N, l <~ k <~d} 

where 6N-(d/N)I/21nN. Notice that •N is a decreasing function of N, 
which means that, for N large enough, each Lk is constrained to be near 
its mean value. The reason for this definition is that on these subsets the 
free energy of our model can be computed using the mean-field theory 
developed in Section 3. 

On the other hand, almost all co will eventually, for N large enough 
(how large will depend on the sample), be contained in the subsets gu, p. 
To make this notion precise, we define the subset O c (2 in the following 
way: 

~ =  {~ ~g213No: VN> N0, (j)~gN, p} 

We then have the following result. 

Proposi t ion  4.1 : 

P(~) = I 

To prove this proposition, we need the following lemma. 

(4,1) 
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L e m m a  4.2. Let A N be the event A N =  {(J.)E~c"~I(J)~gN'P} ". Then 

P(A N) <~ 2dexp [-- ~ (1--d)-l O2Nl (4.2) 

Proof. By definition we have 

P(AN) = P(3ie A: [2i1 >3N) 

Obviously 

P(qieA: ILl > c5)~ dP(1211 >c5) 

Using the exponential Markov inequality, (s~ we have 

P(1211 > 8 ) ~  E(e (;'' a),)+ E(e-(J.,+a),) 

= e  at[E(ea")+ E(e )"')] (4.3) 

Remembering that Lk=  (N/d)(1 + )~k) and defining the multinomial coef- 
ficient as 

( N )= 
LI, L2,..., La_ 1 

N! 

Ll!L2!'"La_a! [N-(L~ +L2+ ... +Ld ~)]! 
if Lk~>O, k = l  ..... d - 1  

0 
d - - 1  

if ~ Lk>N 
k = l  

we find that the Laplace transform E(e ;'1') equals 

E(exp(21 t)) = ~ L1, L; ..... La_I 
LI,  L2,-.. L~ 

~ L1- N/d ( d~ I/2 t] 
x exp [_ (-N/d-~ \At /  

( d - - 1  + exp[ (d/N),])N 
= I-exp( -- t) ] d 

Therefore E(e xx') satisfies the bound 

[E(exp( 21t ) ) <~ exP [ 2@ (1-1) t2 + o ( ( d) 3/2 t3 ) ] 
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and choosing t in (4.3) as t = (N/d) 6(1 - 1/d) ~, we get 

P(12~I > 6)~<2 exp [-~d(1 -1 ) 1 ~ 2 "~- O ((~N)3/2 ~ 3) ]  

which proves the lemma. | 

Proof of Proposition 4.1. 

where 

Thus we have 

We have 

p(D) = 1 - p ( ~ )  

sOc= {(o ~(2[VNo < 0% 3N>N o" (j)r p} 

0 ~< p(~-~c) ~ [p( l i m  A N )  
N~os  

By the Borel-Cantelli lemma, (s) P(limN~ ~ AN) = 0 if Z~v P(AN) < ~ .  
Now, by Lemma4.2, this last condition holds. Thus, the proposition is 
proven. | 

Having shown that ~ is a subset of measure one, we will now compute 
the thermodynamic limit of FA on this subset. For ~o in s we will 
understand that FA(~)=--FA(~[N,p). Let ZEo~s~] denote the characteristic 
function of ~. 

Proposition 4.3. 

where 

Le t /~=  [q/(q- 1)] ft. Then for all ~va/? c 

lira ZEo~]F~.r = ZE,o~ajP(/~) (4.4) 
N--* oo 

F ( f l ) = m i n  ~ - - z~+zr ln (qz~)  + 2 q  
Z~Aq y= l  

(4.5) ,} 
7=1 

and tic is the inverse critical temperature of the Curie-Weiss model for 
Potts variables. 

In order to prove this proposition, we introduce the following change 
of variables: 

N 
L k = ~  (1 + & )  

(4.6) 

f k  m ~'~k'~k 
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and we will denote by 2 the vector (2,,..., ;~a) in ~", by M the diagonal 
d xd matrix with entries Mkk=2k,  and by X~ the set of vectors 
{x~7)}~=l,...,q, where x~ )=  (x~ 7) ..... ;~,l"~)~. Also notice that 2 and Xr satisfy 
the constraints 

d 

2 k = 0  

k=l (4.7) 
q 

x (7) = 0 
7 = 1  

Let us now define the function hA(fl, ,~, X~) as 

hA(fl,)~,X~): P~')(~ _q y~ IIe<')(~ + M )  x<')ll 2 
=1 q 1 7=1 

+ ~ (1 +2~) x~ )+  In x~7~+ (4.8) 
k = l  7 = 1  

Then we have the following result. 

I_emma 4.4. For all cn in ~ there exists No such that, for all 
N >  N 0, 

flI~ A( Yr hA(fl, ), X~)[2= o ~ C(fl, q) ~u N (4.9) 

for some constant c(fl, q) independant of N and p. 

Proof. By the Stirling formula and performing the change of 
variables (4.6), (2.9) gives 

l n i O ( r ~ ) l = - - ~  (1+2~)  x~t)+ In x~')+ + ~ gk(X~) 
k = l  7 = 1  k = l  

(4.10) 

where 

q - 1  
Igk(X~)[ ~ < - - ~  (1 + ln  Lk) (4.11) 

/~/~A(Y~) may thus be written as 

N d 

flRA(Yr 2, Xr ~ gk(Xr 
k = l  

(4.12) 
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which implies 

N h =o ~ I&,(fi, 2, X~ X~)l f lHA(Y*)-7 A(fl, )~, X'4:)I;~ <~ )--hA(fl, O, 

d 
+ ~ Igk(Xr 

k = l  

Using simply that Ila + b I] 2 _  ]lal] 2= <bl (2a + b)>, we find 

N 
-~ IhA(/~, 2, X~) - G(/~, 0, X~) I 

(4.13) 

= - -  P(~)(2 + M) x (~) 
2d ~=i ~=1 

q X(7)>d q ~ <P(~)Mx(Y)IP(Y)(2+ M) 
q--1  7=1 

that under the hypothesis of the lemma we have 12kl ~<3u and 
Ix(Z)l <<.l-1/q. Thus, some simple manipulations involving the 

Note 
that 
Cauchy-Schwarz inequality and the contraction properties of the projec- 
tors P(~) show that the last expression can be bounded by 

----7 5N(2 + 6N) N 

Putting this bound together with the bound (4.11), we finally get 

-dlhA(fl'2'Xr ~--1 (~N(2+(~N) N+2d l n N  

q3 

where we have used that 3N= (d/N) 1/2 in N and dln N<~3NN. Thus the 
lemma is proven. | 

Using the definition of the free energy from (2.11), we may write 

1 exp[--f lHA(Y:)]  
X [ o J e D ] F A ( ~ )  = --~X[~o~.Q] In ~ qU 

Y~ s ~r 

1 , [ {  
Y~e~=~ qN exp 

822/68/5-6 2t 
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and by Lemma 4.4 

1 exp  [ - (N/d) hA(fl, O, X r  
Z[weD]FA(~)<~(~uC'(fl, q ) - ~ [ ~ e D ]  In ~ qN 

Y~ e ~ 

and 

1 

Y,: ~ ~ 

exp[ - (N/d) h A(fl, O, Xr 
qN 

(4.14) 

for some constant c'(fl, q). Notice that 6 N tends to 0 as N tends to infinity. 
We are thus left to study the quantity 

1 exp[ - (N/d) hA(fl, O, Xr (4.15) 
~ Z [ ~ ]  In ~ qN 

Y~ e 3~ 

which we will do using the Laplace method. Therefore, we first have to find 
the global minima of hA(fl, O, Xr 

Lemma 4.5. Let So(fl) be the function defined in Lemma 3.1 and 
~=fl (q/(q-  1)). Then, the global minima of hA(fl, O, Xr are taken on for 
Xr of the form 

z ~  'u )=  {S0(~)  ~#'(Y)}y = 1,...,q (4.16) 

for all ~ ~ { 1 ..... p }. Moreover, we have, for all ~ r and # e { 1 ..... p }, 

l hA(fl, O,X~"))=FtCW)(~,h=O)+fl~q-ln q (4.17) 

with F (cw) and tic defined in Section 3. (Note that in the case q = 2 the 
condition f l#  tic may be dropped.) 

Remark. Notice that, with the relation between e u and ~ given 
by the map Ir of Section 2, each minimum is associated to one of the 
patterns ~u. 

ProoL Putting 2 = 0 in Eq. (4.8), we have 

; q ] fl p(~)x(~) q ~ IIP(~x(~ll~ hA(/?, 0, Xr  q -  1 
"~:1 7~1 

d 1 ( x T  1 
+k~__, ~ ( k  + q )  l n \  + q )  (4.18, 

~=1 
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Since 

and by (4.7) 

we get 

(~)~( ' )112  _ p ( ~ , ) )  
liP ~ ,,a+ I1 (~  x<')ll~--Ilx(~>ll~ 

= + Z 
),=1 q 7=1 

P('x(" i ] 
~a q -  1 7 = 1  

4- - - ~  4- 
k = l  , = 1  

+ x~ 7)+ In q x~ ' ) +  + 2 ( q - l )  

where we recognize from Section 3 the function 

,=1 ~ { -  ~(x~)+~) 2+ k x(')+l-~ln[q(x~)+~)]}qj (4.20) 

which, minimized over the vectors (x~l),..., x~q))~ ~q satisfying the con- 
straint (4.7), gives the free energy F (cw) of the Curie-Weiss model for the 
inverse temperature ]~= f l (q / (q -  1)). Since the first two terms in (4.19) are 
positive, the global minima of ha(/~, 0, Xr are attained for all Xr that mini- 
mize (4.20) for all k = 1,..., d and at the same time annihilate the first two 
terms. Now P(')e"(~)=e "'(~) by definition, and taking into account 
Lemma 2.1, we see that for any vector x (~) of the form se ''(~) the first two 
terms in (4.12) give zero. Moreoever, we have seen in Lemma 3.2 that the 
term (4.20) is minimized by these vectors exactly if s is chosen as So(~) 
defined in (3.5), (3.6). We have thus proven the lemma. ] 

We are now ready to prove Proposition 4.3. Let us write 

S =- ~ exp[-(N/d) hA(fl'O'Xr 
qN 

By Lemma 4.5, S satisfies the bounds 

S>~ ~ exp {--N[F(C-w-'(',h=O)+ fl~q?} 
x ~  - ~ ,u )  
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and 

Using that 

for all Y~ e Zr and that 

d 

2 1-<1-I1'I 
Y{ffZ~ k = l  ?,=1 

we get 

L~`< (1 +6N) `<e 6NN 

S ̀ < exp { -  N[F(CW)(~, h=O) + fl-~q]} exp(6N N) 

Taking logarithms and dividing by N, we get 

lnPN {F(CW)(' h=O)+ fl~q} ̀<S`<~N 

(4.21) 

which proves Proposition 4.3, since both (ln p)/N and 0 N tend to zero as 
N tends to infinity. | 

We finally get the following result. 

T h e o r e m  1. For all jT~fl ~ 

lim FA.B(~) = ~'(fl) 
N ~ o ~  

for almost all co e Y2 and in all Lr(O, Z, P), l ` < r <  ~ ,  where F(fl) is 
defined in Proposition 4.3. 

Proof. The almost sure convergence is obtained by putting together 
Proposition4.1 and Proposition4.3. The convergence in the spaces 
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Lr((2,/~, P) follows from the mean convergence criterion, I5~ since the 
random variables { IF a ({)lr, N>~ 1 } are uniformly integrable. We give the 
proof of the uniform integrability in the Appendix. 

5. S T R U C T U R E  OF T H E  G I B B S  S T A T E S  

The form of the free energy functional found in the last section 
suggests that for t >tic the extremal infinite-volume Gibbs state of our 
model should be the measures ff~ concentrated near the original patterns 
~". Of course, taking the limit of e-~U/Z, we would get a mixed state, 
namely the symmetric linear combination of the extremal states. To 
construct the state fr we have to add to HA(a; 4) a "magnetic field" 
coupling to the pattern ~ ,  that is, we write 

, 
HA,,(a ;4)--  2N 

# = 1  i 1 

i = i  

Note that q ~> 0, so that the minimum corresponding to ~ is deeper than 
the other ones. We denote by N~,~,~ the finite-volume Gibbs measure 

c~3,~,~(a; 4)=  exp[--flg~A,~(~r; ~)] 
~ ( 5 . 2 )  

q ZA,,8, q(~) 
where 

Z~,/;,.(~) = ~ expl---flH~a,,~(a; 4)] 
qN ( 5 . 3 )  

(r~,9 ~ 

The states ~ = are then obtained by letting first N Too and then ,/$ 0. 
While we will not actually construct the measures ff explicitly, we 

construct measures .9 induced by them on the physically interesting 
"overlap parameters" m~(o'; 4). These are defined as 

m~(a; ~)=~/ i=1  

and measure how close a configuration of spins a is to the pattern ~", in 
that 

{ 1 - -  if a = ~  ~ 
q 

m~(a; 4) = 1 if a is "orthogonal" to ~u 
q 
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For a finite-volume Gibbs state fgA,a,,, we set 

,tt, ct ~ . mA,~,,7(~ ) = ~ m~(a; ~) f f  A,p,,7(a, r 
f f  E ~9 o N  

Furthermore, for any finite integer k~<p and 
{#1,-.., #k} ~ {1 ..... p} we define the map 

[ 11 jr ~k: 6eU 
--' t_ - q 

a ~ (m3'(o-; r m~k(a; r 

any 

(5.5) 

family 

(5.6) 

Under this map the Gibbs measures f#].~,, induce measures .~,~,.  on 
[ - 1/q, 1 - 1/q] k. 

We will prove the following theorems: 

T h e o r e m  2. Let ]~= [ q / ( q -  1)] fl and So(~) defined in Lemma 3.2. 
Then for all ]~ ~ tic 

,,~ q - 1  
lim lira rna,a,n(~ ) = So(~) 6(~, #) (5.7) 
r/ .LO N T ~  q 

for almost all co e s and in all Lr(Q, X, P) for 1 ~< r < o0. 

Remember that by Lemma 3.2, So(]~)=0 for ]~<flc and has a jump 
discontinuity at ]~=l?" in the case q > 2 ,  which means that the model 
undergoes a first-order phase transition in the mean overlap order 
parameter. 

T h e o r e m  3. Let 6~t,...,~ k be the Dirac measure in R k concentrated 
on the vector 

1 q 
So(/7)(~i(u~, ~),..., ~ ( ~ ,  ~))  

q 

Then for all ~ ~/?c and for almost all co E f2 

ct lim lim -~A,,,, = 6,1,...,~, 
n , L 0  N T ~  

in the weak topology. 

Remark .  Theorem 2 is of course a special case of Theorem 3. We 
state it separately, since its content is of particular interest. We first prove 
Theorem 2. The proof of Theorem 3 will be a rather simple extension of 
that of Theorem 2. 
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We will finally show that the formalism introduced in the proof of 
Theorem 2 can be easily generalized to the case where the external 
magnetic field couples a finite number of patterns with equal strengh. That 
is, for any finite l < p  and any family {cq,..., ek} ~ {1 ..... p} we define the 
Hamiltonian 

HA." (a, ~) = HA.,(a; ~) - ~l s ~'=1 i = l  6(~7J' O'i) - -  

~,...,~t and ~1 ,..., ~/ Denoting by aJA,a, . ~A,~,n the associated finite-volume Gibbs measure 
and its image under the map ~,~,,...,~k, Theorem 3 becomes as follows. 

T h e o r e m  4. For all f l- / f l~ and for almost all coef2 

1 l 

lim lim ~A,a,,7 -I j= 1 
, 1 0  N'~ov 1~1 ,..., #k 

in the weak topology. 

Proof  of  Theorem 2. We first express the Hamiltonian (5.1) and the 
overlap parameters in terms of the variables Yr Using the transformations 
described in Section 2, we find that the effective Hamiltonian associated to 
(5.1) becomes 

(5.8) 

and for all cr~SP(Y~), the overlap (5.4) takes the value 

1 
m~(cr; ~ ) = ~  (e ~ ] Y~_)q, cl (5.9) 

Y - q (e~'(';)ly(7))a. Thus, the mean overlap can be where (e~[ r 
expressed as the expectation with respect to the "canonical" measure VA,~, . 
associated to the effective Hamiltonian, that is, 

where 

and 

1 
mA,fl," (~)u '~  = ~ Ar (eu[ Ye)q, a V A , f l , , ( Y r  (5.10) 

Yr E S~ 

= --flHA,q(Yr VA,a,,(Yr exp[ N ~--~  
q ZA,a,,(r 

(5.11) 

exp[ -~ -- [IH A'q( Yr ] (5.12) ZA,3,n(~)= E qN 
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In order to prove the theorem, we need a generalization of Lemma 4.4 for 
nonzero magnetic field. Let us define 

q 

h](fl, 2,~l,X~)=hA(fl, 2, Xr  ~ (e ~'(7~ (~+M)x(7))  a (5.13) 
y T = l  

Then we have the following result. 

Lemma 5.1. 
N >  No, 

For all co in ~ there exists No such that, for all 

r/, Xr <.[c(fl, q) 

(5.14) 

for some constant c(fl, q) independent of N and p. 

Proof. This lemma is proven exactly as Lemma 4.4 Just notice that 
we have the bound 

(e~'(7)[Mx(~))d <~qd ~ N  I ( 5 . 1 5 )  
y = l  

Remember that ~ " ) =  {So(fl)e~'(~)}7: ~,...,q, # = 1,..., p, are the minima 
OfhA(fl, O, X~). We denote by X~' the unique minimum of h~(fl, 2, q, Xr for 
nonzero r/. We put 

1 
fft~',~,,(r = ~ (e" I Xg )q,d (5.16) 

for ~ = 1 ..... p. Now 

q 

1 N ( e u l  Y~>q,d=~ 
y 1 

1 q 
= - -  aE 

7--1  

d 7 = 1  

(t~'(7)] (~ + M) x ~7~)a 

(~'(7>1 (~ + M) x (7)- x*'(7))a+ rh~:~,,(~) 

1 
( e~"(~) [ Mx<r) ) a + ~t (eu [ Xr -- X~" ) q,d ~- /~/~',~,r/(~) 

(5.17) 

Using (5.15), we thus have 

/.t, Ct ~ /2,~ 
[mA,a,,(~ ) -- mA,a,,(r I 

(5.18) 
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Our strategy will be to prove that the right-hand side of (5.18) converges 
to zero as N tends to infinity for ~/small enough provided co is in the space 
~. To do so, we decompose the sum over Y ~ e ~  into two pieces. We 
define the set 

A -= {Yr e2r  IlXe-X~'llq, a<~xfdp(~l, N)} (5.19) 

where p is a function of 17 and N such that p$0 as NT oo and will be 
chosen appropriately later. Using that (see Lemma 2.1) 

I@~lX:-X?)q, al<~lle~'llq, dHXr d<~dp(~l,N)(q-l~l/2 (5.20) \ q / 
this definition implies the bound 

[mA,t~.,7(~)- mA,a.,7(~)l ~<q ~N-~ lO(g], N) 

1 
+ r~Ac~l(e~'lXr avA,~.,(Yr (5.21) 

The first two terms in (5.21) vanish by definition as NT o% so that we are 
only interested in the third. Note that we have a uniform bound 

dl(~lXr ~< 2q ( - ~ )  2 (5.22) 

SO that we are left to study v],a,,(Yr Obviously, 

vS,~,.(re) 

= (exp { - I  flI~A.n( Y,)--N h](fi, O, tl, Xe)] - d  h~A(fl, O, rl, X~) } ) 

x (y~z  exp {-- [ flH A,.( Y~)--d h~A(fi, O, q, X~) ] 
})_1 

d h~(fl, o, ,7, x~) 

and using Lemma 51, 

<<. exp(26NN)-- exp[--(N/d) h~A(fl, O, tl, Xr 
feaze exp[--(N/d) h~A(fl. O. 11. Xr 

=exp(26NN)-- exp{-(N/d)[h](fl, O, tl, Xr O, tl, Xg)]} 
r r~z~ exp{ --(N/d)[hA( fl, O. tl. X~)- h~A(fl, O, t l, Xg)]} 

(5.23) 
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Since the denominator in (5.23) is larger than one, we arrive at 

N 
vA,a,,(Yr ~< exp(26NN ) exp -- ~ [h~(fl, O, tl, 

Therefore 

xr h3(/~, 0, ~, X~*)] } 

Im A,a,,(~) - r~ 3",%, ~(~)1 

+ 2 q ( ~ ) 2 e x p ( 2 6 N  N) 

X ~, exp ---~[h~A(fl, O, 
Y ~ A  c 

1/2 

p(q, N) 

~, xr h~,(/~, 0, ~, x?)]} (5.24) 

To bound the exponential in the last equation, we must introduce some 
technicalities. Let us write x~ for the vector in ~q whose components are 
given by x(k r). Notice that for t/ small the absolute minimum X~' will be a 
small shift of the corresponding minimum . ~ )  in zero field, that is, for all 
7 = 1 ..... q, 

(5.25) 

Since hA(fl,  ,~, X~)  is a sum of d real analytic functions symmetric with 
respect to the index 7, it follows by the perturbation theory that 0(t/) is 
independent of 7 and O(q) = O(t/) if r/is small enough. Remember that the 
xk take value in the subset 

We will divide A q into q pieces A~ defined as 

A q - -  ~ -- {Xk ~ a~,q ~k"(r)>~X~ ~') for all 7 '=  1,..., q;7' ~7} (5.26) 

It is easy to check that A~ is in fact the subset of points Xk~Z] q for which 
5 (r) is the closest of the minima 5(1),..., ~ ( q )  defined at the end of Section 3. 
Let xk e A ~ and x* e A ~*. We then denote by 9-xk the reflection on a hyper- 
plane that takes A~* into A~. We will denote by Yx~(X') the ensemble of 

OW P the d vectors {Yxk(Xk)}k= 1,....a. With this relation we can now announce the 
following result. 
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I_emma 5.2. There exists a constant a>0,  depending only 
such that for all Y~ e ~ and for r/sufficiently small 

__~-'], (X*~II 2 h S ( ~ , O , ~ , X ~ ) - h ~ ( ~ , O , q ,  Xg)>~allX~ ~ ~ , ~  

where ( ~-xr =) - e= ] X~ ) q,a ~ O. 

Proof. Let us write 

- -q l  {~ x(y) -- (x(k?) 1 [ (X;/) g(xk ,=  ~ ( ~ +lq)2+ + q )  ln q + ~ ) ] }  

A(x~) = - / ~  ( ~  I x~ )q 

that is, 

I ~' i q 
d fld 

+ ~ (g+f~)(x~)~  
k=l 2 (q -  1) 

We may write 

q 
II(} - P(~) x(~)[I 2J 

din q 

on q, 

(5.27) 

(g + fk)(Xk) = (g + fk)(Xk) -- (g + fk)[Jx,(X*)] + (g + fk)[Jxk(X*)] 

Furthermore, 

s = -/~n (z%(~k) I Jx&k ))q +/~n (Jx,(~k) - ~k W z%(xk ))q 

and 
:t ~ g:t :r 

fk(xk) = -fin (ek 13-7~k(Xk) )q + ~ < xk( k) -- ~'k l Xk )q 

Combining these equations, we get 

(g + fk)(Xk) = [ {g(xk) -- flrl(~7-k(a~)]Xk)q} -- { g(~k(X*)) 

-/~n(z%(E,) I J x & ,  ))q}] + {g(9-x~(X~)) 

- ~ ( ~ )  I Y-~(xZ))~} + [~(9-~(~)  - ~; I x~ )q 

= [ 1 ] + { 2 } + ( 3 )  

Since xk takes values in a compact set and ~ ( x k  ) realizes the minimum 
of the function 

g(x~) - / ~  (J-A~;)I x, )q 
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there exists a constant a > 0 such that the term [-1] is bounded by 

, 2 [1]  ~>a ]]x, -- ~x,(x,  )]] q 

To deal with the term {2}, note that g is invariant under permutations of 
the components of a vector x ,  and that 

( ~Xk(~k) [ ~gxk(Xk ) S q ~-- ( ~'k l Xk 5 q 

Therefore 

{2}=(g+ fk)(x~) 

Finally, 

O~- 0: cZ 
2_~_ (g  ~_ f k ) ( X ~  ) ~_ f l~ (  ~lXk(~,k)__ e k i xk )  q (g q- fk)(Xk) >/a axk -- ~'-xk(X~)H q 

It is easy to check that the term ( ~ k ( e k ) - e  k IX,)q is positive. To do so, 
~- ~ ~' Using the ~' and ekeA~q ", then Jxk(ek)eAq. let us suppose that xk~Aq 

constraint ) z q = l x ~ = 0 ,  we get ( J~ , (8 , ) IXk)q=X~,  (eklXk)q=X ~, and 
x~'/> x~", since xk e A ~'. 

The lemma is now obtained by realizing that the term 

q 2 q q 

I1(~ - P ~ ) )  x~ ) l l  = d 
7=1 

is positive and vanishes at a point X~'. | 

We will also make use of the following result. 

and 

Lemma 5.3. For all Ye e-7~ and X* defined in (5.25) 

[lY-x~( x t  ) - X t  ll 2q,a = 2 ( Jxr  ) -  X~' l Y-xr xg') ) q,~ 

ProoL Since 

d 
~ -  :r ~ 2 I lY-xr 2 q,d = { S o ( / ~ ) ] - I  -}- 0 ( / 1 ) ] )  2 E II~%(~k)-e~llq 

k = l  

~ ' - x ~ ( X g )  -- X ~  [ ~ a T x ~ ( / ~ ) ) q , d  = { S 0 ( f l )  [-1 '{- 0 ( / 7 ) ]  ) 2  

d 
gOT ~x ~ jOT • Y~ (Jxk(~k)--~kl~'xk(~k))q 

k = l  

(5.28) 
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the lemma follows from the equality 

[{ ~x~(~k) -- ~ l lq  = 2 (g/~k(ek) -- e a- I Jx~(e~))q 

which only uses the fact that Y-- is a reflection. II 

We are now ready to prove the following. 

(5.29) 

P r o p o s i t i o n  5.4. There exists r/o > 0 such that, for all 0 < r/< r/o, 
and )7r ", 

lim ZEo~mA.a. , ( r  ) -  Z[o)ED3mA,B,n(~) N~oo 

Proof. Let us define the set 

B =  { YceZr IIX~--3-xe(X~)llq, d>~xfd~(r/, N)} (5.30) 

where r is a function of r /and N such that ~ 0  as N~ oe and will have to 
be chosen suitably. Then the sum over Yr e A C in (5.24) can be decomposed 
into two pieces, either Yr ~ A c c~ B or Yr E A C n B c. For YeA c n B we have 
that 

exp(2~NN ) ~ exp {-- d [h~A(fl' O,r/, X ~ ) - h A (  fl, O, 11, X~)]} 
Yr ~ AC c~ B 

~< exp(26NN) exp(6NN) exp -- ~ [adt~2(r/, N)]  

= exp{ [36N--a~2(r/, N)] N} (5.31) 

where we have used (4.21). The last expression converges to zero as N~ oe, 
provided only ~(r/, N) is chosen in such a way that a~2(r/, N) > 33N, which 
can be done easily for any a. 

On the other hand, to bound the sum over Yr ~ Acc~ B c we will use 
that the positive term <~-x~(s ~ ) -  e~'lXe )q,d should be large enough, since 
Xr is far from X~. By (5.25) we rewrite this term as 

( ~'-Xe(F, ~ -- ~~ [ Xr  ) q, d 

= b ( J x e ( X ~  ) - XglX~_)q,d 

+ ( ~ " x r  -- Xg [ ~--Xr )q,d] (5.32) 

where we have put b= l /{so(~) [1  +O(r/)]}.  Remembering that 
Yr A ~  B ~ and making use of the triangle inequality 

ItSr - Yxr )II q,d + II ~ ' - X r  ) - -  Xg l[ q,d ~ II x~ - x~* II q,d 
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we get the bound 

] lJ~(x?)- Xgll~,~ > l-;(~, N)-iS(q, N)] ~ (5.33) 

which together with Lemma 5.3 yields 

d (Jxe(X~')-X~' [Yx~(X?)>q,a>~ [p(q, N)-~(~/, N)]  2 (5.34) 

Now we have 

I < J-x~(xg)  - X g l X ~  - z ,%(x~)>q, dl 

- x ~  IIq,,~ I I X ~ - 5 % ( x ~  )lJq, d < IlY~r * ~- * 

Thus, the first term in (5.32) is bounded by 

( ~ ' - x r  - ~ ' - x ~ ( X g ) ) q , d ~  __(q~ql)d~(q, N) (5,36) 

and we finally get 

d N)] 2} (5.37) + 5 [P(~/' N) - ~(t/, 

Therefore 

exp(26N N) 

Gayrard 

N h ~ } exp - - ~ [  A(fl. O.q.Xr O.q. Xg)] 
Y~EAC~B c 

N <~ exp(26NN) exp {-- -d bfl~l I-- (q-~q1) d~(q. N) 

d +-~ [p(I1. N)- P(~l. N) ]Z]} 

<~exp{N[36u+bfl~l(q_~ql)~(q.N) _ --~bfl" [p(,. N) - ~(~. N)]2]} 

(5.38) 
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which again converges to zero for/3 satisfying a/o2(r/, N) > 332v and for any 
fixed r/> 0 provided p(r/, N) is chosen such that 

Notice that in the case f l < B  ~ the above result can be proven in 
simpler way, since the minimum Xr is now just a small displacement of 
the unique minimum in zero field. 

By Propositions 5.4 and 5.5, the proof of Theorem 2 is now immediate. 
Just note that by Proposit ion 4.1, ZEro ~ ]  = l almost surely. Moreover, for 
all fl>fl~', Xr converges to So(fl)e ~ as r/goes to zero and thus 

So(fl) ( ~ u l ~ , ) q , d _  q -- 1 So(~ ) (~(#, ~) lim rh]'},~(~) = - - j -  
q--*O q 

The convergence in mean of order r follows from the bounded convergence 
,ucr theorem since Im3',a,,(~)l < 1. | 

P r o o f  o f  T h e o r e m  3. Since I - l / q ,  1 - 1 / q ]  ~ is a compact space, 
using the Weierstrass theorem, it is enough to prove that for any family of 
continuous bounded functions f l  ,..., fk ~ crib([ -- 1/q, 1 -- 1/q] ~, ~ )  

lim lim ,.~,p,,7(fl(m~(o'; ~)) x .-- xfk(m~k(o; 4)) Zt~o~] 
r/,~0 N ~ ' ~  

(5.40) 

which obviously follows from the results established to prove Theorem 2. 
To see this fact, notice that 

f r �9 ~)) -- fi(mA,13,,7(~) ) J i \  A ~  ' 

i = l  i = 1  

i = 1  

x 1-[ ~ '"'"J(a; (5.41) ]jt,,,~, ~)) 
j = i + l  

where mA,~, "~'~'~ is defined in (5.16). Since f2 are bounded functions, there 
exists a constant c such that ]fj] < c  for all j =  1 ..... ~c and hence (5.41) is 
bounded by 

k 
~ p i , ~  ~, ck -~  ~,i,t-tm~"ter'a, , r162 I (5.42) 

i = 1  
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Thus, for ~o e ~, we are left to study the quantity 

~ ,~ , ,  ck-I Lf/(m~i(a; ~ ) ) - L (  A,a,,( ))l 
i 1 

= ck-1 Z Z f/ (d"l Yr 
i = 1  Y4eZr 

--f~ (d  {e~"] X~' }q,d)v],/~,,(Yr (5.43) 

which we will do again by decomposing the last sum into the sums over 
YceA and YceAq In the case Y~eA we have by (5.17) and (5.15) 

1 1 [X,~q, d , ~  (q~ql)  2 
{eu'l Yr }q,a--cl {e~" <<. q O N 

+ p(r/, N) (5.44) 

and by continuity 

1 
)q,d) e (5.45) f , ( l  (e'lYr < 

for any arbitrarily small e provided that N is sufficiently small. Thus, 

) (; �9 E fi {~3uily~}q,d--fi {~3u*[X~}q,d VA,fl, n(Yr ( 5 . 4 6 )  
Yg~A 

On the other hand, for Yr e A ~ and using the uniform bound 

1 fi ( l  {e'uil Yr -- fi (~t {gmt X~ }q, ct) <2c (5.47) 

we get 

1 
y~eAc fi(  N {eml Yr fi(~l(Eui[X~}q'a) v~,a,,(Yr 

<2c ~ V~A,t~,,(Y~) (5.48) 
Y~A c 

and we have already shown that the right-hand side of (5.48) converges to 
zero as NI" ~ for any small t /> 0. | 
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Proof o[ Theorem 4. We will substitute in the notations the index :~ 
by the family e~ ..... e~ for all the quantities associated to HA, ~ . Under the 
same assumptions as in the proof of Theorem 3, it is enough to show that 

(A ) ~1,...,~ f (m#i(G.  lira lira -~.,a,. J~t At , r ZE~,~? 
~+0 N T ~  

l i  __D ~ ( q q l  ) - 1 f '  So(#) a(c~+, ~ )  z t ~ o ]  
j = l  i =  

(5.49) 

Denoting by X~ ''(~1~ ..... X~ '(~) the l absolute minima of HA," and by 
A(~),...,A (~') the subsets 

A <~j)= { Yr +~r  tlXr - X?'(~J)ll~,d< ~P(~, N)} 

associated to each minimum, we have 

cq,...,c~i f (m,Ui[ff. 
~'~A, fl, t l J i ~ ,  A \  ' 

i 

= F~ L(m~'(o; ~)) v~,~,. (Y~) 
Y~ ~ ~ i = 1 

r =  1 Y r 1 6 2  i =  

l 

= E t ;+ t2  
r ~ l  

(5.50) 

We now choose coe~.  Then by extending the formalism introduced 
previously in the case I=  1 to the case l >  1, it is easy to show that 

Y~ ZEY~<U'r=~A+))qV~,','i~;2'(Yr <0(n, N) (5.51) 
Y( ~ ~ 

where 0(t/, N),L0 as NT o% since the sum in (5.51) is carried out over a 
subset where Xr is far from each minimum X~ ',(~j). Therefore the term t2 in 
(5.50) is bounded by 

It21 < ck~)(r/, N) (5.52) 

822/68/'5-6-22 
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On the other hand, we can rewrite the terms t~ as 

r ~ [2i,~2 r OCI,...,O~ I t l =  ~ f i (m~ ' ( a ;~ ) ) -  fi(mA,e,.(~)) Z[yCEA(~r)]VA,B,q(Y~) 
Y~ E --~ i i = 1 

+ L( ~,e,.()) Z zE~*~,~v~,~,.(Y~) (5.53) 
i Y~ E Zr 

where the first term converges to zero as N t o o  (see the proof of 
Theorem 3). To deal with the last term in (5.53), notice that by symmetry 

1 
gl ,...,c~/ lim ~ ~[Y{~A(=r)]YA']3'" (Yr  

N T m  y~ 6 .~  

for all r = 1 ..... l. Thus, the theorem is proven. | 

APPENDIX.  U N I F O R M  INTEGRABILITY OF THE FREE ENERGY 

As we have shown in Section 4 (see proof of Theorem 1), the con- 
vergence of the free energy in the spaces Lr(s S, P), 1 ~< r < ~ ,  directly 
follows from the uniform integrability of the sequence {JFA(~)] r, N~> 1 } of 
random variables, that is, the following result holds. 

Proposit ion. We have 

Proof. 

lim sup f a~ 0o N>~Uo lEA(C)] r dP({) = 0  
[]FA(~){r > a] 

Decomposing the integral 

I =  J IFA(r dP(r (A1) 
[tFa(r > a] 

as a sum of integrals over the sets [ka< IFA(~)l"<~(k+ 1)a ] ,k~>l ,  we 
have 

I<<. ~ a(k + 1) P(]FA(~)lr>~ka) (A2) 
k = l  

To bound the probabilities in (A2), notice that 

leA(< ~)1 
IFA(~)I ~< max fl (A3) 
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Therefore 

p( iFA(~)[r>>.ka)~P(max IHA(~; ~)/ ~ 1  ) 
\ ~  ,~'~ N ,i fl (ka)1/~ 

~ p .IliA ~)1 ~>~ (ka)~/~ (A4) 

and using the exponential Markov inequality, (5) 

~(IFA(~)l~>~ka)~ ~ [ i n f e  nNt~_~(e~lHa(a;~)l)] (A5) 
o_ ~ spA q > 0  

where we have put t = (1/fl)(ka) 1/~ and the expectation is taken with respect 
to the family (~)i_l,...,N;it_l,...,p. TO estimate the right-hand side of (A5), 
we rewrite the expectation as 

E~(exp{q IH A(a; ~)1 } )  

= F_{w~u=x.....p} ~_r exp 
1 i = 1  

(a6) 

where W", # =  1,...,p, are i.i.d, random variables on ~ with standard 
normal distribution JV(0, 1). We use the following result. 

Lernma.(8) 
Xi = 1 with probability 1 - p .  Then for any real number 2, 

~_(e;.(sN E(sN)) ~ e~3N/2 

Using this lemma, we get 

1 

- [1 - rl(q/(q - 1))2] p/2 

F 
~< [_(1 - 4q)mJ 

where we have use that p < N and q/(q - 1) < 2. Therefore 

inf e-nNt~_~(e nll4a(~;~)l) <~ inf e Nf(q,t) 
q > O  q > O  

Let S N --~N=I J[i, where Xi= 0 with probability p and 

(A7) 

(AS) 
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where f(r/ ,  t ) =  r/t + 1 l n ( 1 -  4r/) is a convex funct ion of r / m a x i m i z e d  at  the 
po in t  r / * =  - 1 / 2 t  + 1/4. Remember ing  that  t = (1/ f l ) (ka)  l/r, we finally have 
that  for all a > a0 and  a0 sufficiently large, 

inf e-~Nt~s (e ~ IHA(cr;~_)[) ~ e -  N(c/4fl)(ka)l/r 
q>0 

(A9) 

where c is a posi t ive cons tan t  depend ing  on ao and  ft. Pu t t ing  (A9) together  
with (A5), we find 

•( IFA(~)I r ~ ka)  <~ qNe--N(c/4fl)(ka)l/r (AIO) 

The  p ropos i t i on  is now proven  by insert ing (A10) in (A2) and  tak ing  
successively the sup remum over N > No and  the l imit  a 1" ~ .  l 
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